AD=-AO41 485 TEXAS A AND M UNIV COLLEGE STATION DEPT OF INDUSTRIA--ETC F/6 12/2
A GENERAL COST STRUCTURE FOR THE SEMI=MARKOV SHOCK MODEL. (U)

JUN 77 R M FELOMAN AF-AFOSR-3111-76 |
UNCLASSIFIED AFOSR=TR=77=-0764

END

DATE
FILMED

77




* AFOSR-TR- 77~ 0 7
m A GENERAL COST STRUCTURE FOR
w THE SEMI-MARKOV SHOCK MODEL
T f |
=) | |
< \
\, ).’
e 4 f by
Y Richard M. Feldman
F
.- ',.‘:-‘9'66“
.~:\\'-t‘: go*
Ag®
z >
oo
3 8 Industrial Engineering Department
/ Ly Texas A&M University
R
2 R College Station, Texas 77843
o
=
i June 1977
=
I
"‘W'w-ﬂv- ""'*. ~ S ORI
i ] e Lt e W
' = - - T N, 9L A S i o o

TR o NG 45 s %, 5

s it il




A GENERAL COST STRUCTURE FOR
THE SEMI-MARKOV SHOCK MODEL

by
Richard M. Feldman
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ABSTRACT

The semi-Markov shock model represents a system where shocks
occur at random points in time causing random magnitudeg of damage
in such a way that the cumulative damage to the system over time
is a semi-Markov process. System failure can occur at any of the
shpck times and the probability of a failure is a function of the

cumulative damage. An optimal -~ontrol limit type policy has

Previously been derived assuming that costs are incurred at the
replacement time. This note is to show that the inclusion of state
dependent maintenance costs does not significantly affect the form

of the optimal control limit.
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Renewal Theory
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1. INTRODUCTION AND NOTATION

The optimal control limit for a semi-Markov shock model has
been derived in Feldman (1976). In that paper, a very simple cost
function was used. The purpose of this note is to extend the results
of that paper to include a general cost structure.

Although a complete description of the process is given in the
previous paper, it will be repeated here for ease of presentation.
Let the Markov renewal process (ﬁ,f) = {in’in; n=0,1, . . .} be a
non-terminating process with state space E where fo, fl, 52, A et
denotes the initial, first, second, . . . shock times and ib, fl,
fz, . . o denotes the cumulative damage at the respective shock times.
(The initial shock time is always zero, i.e., T0=O.) The state
space E is taken to be a subset of the non-negative reals or the non-
negative integers. Let h(x) denote the probability that the system
fails at time f; given i; = x and given that the system was working
at time i;-l' The function h is assumed to be non-decreasing, and
it is assumed that there exists y 2 0 and some n = 0,1, . . . such
that h(y)> 0 and P{i; o ib = x} < 1 for all x < y. (This last
assumption is used to insure a finite expected failure time.)

Define the random variable L to be the n such that f; is the

failure time of the system; thus,
P{L > n |x°,xl, o .,xn} = (1-h(Xy)) . . . (l-h(xn)). (1)
The time to failure is defined by

siel = Toom - @
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Let the "death state" A be a distinct point not in E and
define the Markov renewal process (X,T) by
xn(o\) if n< L@),
X (9 = 4 (3)
A if n 2 L(w;
and 4
—
'l'n(m) if n € L(w),
Tn(m) = 4 (4)
4 if n > L(W)o
&
The semi-Markov kernel of (X,T) is denoted by Q and is defined for
x, yé€ E, t 20, by
Q(x,y,t) = M X<y, TS0 | Xg=x} (5)
= < <
= Px{ X\=Yys Tl..t}
= X < . %
Px{ Xl_y, T,it, L>1}
- ’ Q(x,du,t) (1-h(uw)),
ueP,y]
where (3 is the semi-Markov kernel of (X,T) and should be a given
quantity. The Markov renewal kernel associated with Q is R and is
defined, for x, y €E, t 2 0, by
T
R(x,y,t) = 2 Q (x,y,t) (6)

n=0




where

n+l

Q T(x,y,t) = Q(x,du,ds)Qn(x,y,t-s).

]uG.E Léf.o,t]

The imbedded Markov chain X will have transition matrix P and, by

an abuse of notation, its potential will be R; thus

P(x’Y) - %}g Q(xoy’t) (7
and
R(x,y) = lim R(x,y,t) = 2 Pn(x,y). (8)
e n=0

For a fixed control limit a, let Ta denote the replacement

time and let Aa denote the index of the shock time at which replace-

ment occurs; that is,

A, (w) = L(w) N inf {n: X 2 a}l (9

and

T, =T, W). (10)
(1

Equations (3) and (4) define the shock model and equations (9)
and (10) define the replacement policies. In the next section the
cost structure is given and in Section 3 it is shown that previous

results apply to this more general situation.
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2. THE COST STRUCTURE

The costs used in Feldman (1976) were a fixed replacement cost
and an additional incremental cost incurred upon failure. 1In
Feldman (1977), a general replacement cost function was used but again
no maintenance cost was considered. Optimality was based on long
run average cost assuming instantaneous replacement with an identical
system. In this note, both a maintenance and a replacement cost
function are used. Furthermore, it is assumed that the time for
replacement is a random variable denoted by o.

Consider the renewal process formed by repeated replacements
of identical systems, each system having a lifetime given by the
distribution of B and a replacement time given by the distribution
of o. Let the cust of the first, second, . . . replaced system be
Cy» C5» + + « , where {Cl, Chs v - .} is a sequence of independent
identically distributed random variables. If Nc is the number of

renewals in [0,t] and wa is the long-term cost per unit time, then

E[CI]
Wm = %_1’2 %[Cl + ..+ CNt] = E—[;F]- s (11)

Let the cost of replacement be given by the function f, where
f(x) is the replacement cost if the cumulative damage is x at replace-
ment time. Let the maintenance cost be determined by the rate function
c(x), where c(x) is the cost per unit time incurred while the system

remains in state x. Thus the expected cost per system is defined

by
A1
E[C,] = E[£(X, ) + ] ec(X)(T ,, - T)]. a2
a n=0
f- a&ﬂ':’r'k?..:' ‘:4;."‘": _— -~ '_”';' 1'.:._7 e
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The objective is to find @ such that ¢ minimizes wa where wc is

defined by equations (11) and (12).




3. OPTIMAL REPLACEMENT

The main trick is to substitute the maintenance and replace-
ment cost functions by a single equivalent replacement cost function.
This is not a new trick and was done by Dynkin (1963) for Markov
processes and has been used often for both Markov chains and Markov
processes. The following lemma incorporates these ideas for Markov

renewal processes.

(3.1) LEMMA: Let (X,T) be the Markov renewal process defined

by equations (3) and (4) and let Aa be defined by equation (10).

Then 4is
a

E L § e(X)(T ,-T)] = [ R(x,dy) c(y)m(y)
y €E

n=0

- B R(X, , .
x[]ch (X, Ye(y)m(y)]

where m(x) is the mean sojourn time in state x; or

m(x) = ] [1-Q(x,E,t)] dt .
t>0

Proof: Let ¢ be an arbitrary non-negative function and let

Ré{x) = { R(x,dy) ¢(y). Then for the Markov chain X,

yEE
A-1

Ro(x) = E_[ Zoux )] + E_[Re(X,)] (13)
ns=

(see ginlar (1975, page 201)). For ease of notation, let “ﬁ-Tn+1-Tn

e e e




7
and define ¢ (x) = c(x)m(x). Now note that
RO(x) =E [ ] c(X)m(x)]
n=0
- ngo E [c(X)E [V |X 1]
- nzo Ex[Ex[c(Xn)WnIXn]]
= ] Elc®x) W]
n=0
=El 3 c(X)W] .
n=0
Using an identical argument on the other two terms in equation (13),
the result of the lemma is obtained.
(3.2) LEMMA: For a fixed control limit a, the long-term cost
per unit time is given by
£(x) + f R(x,dy) [B¥(»)-¥ ()]
w = J G- [o’Q]
A ?
Efo] + J R(x,dy)m(y)
y €10,a]
where
¥Yx) = £(x) - ] R(x,dy) c(y)m(y)
y<E
and
P¥(x) = I P(x,dy)¥(y) + £(8)[1-P(x,E)] .
y&E
Eodeian s sl SeR N2 >k T R
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Proof: The denominator of equation (11) comes from Feldman (1976,
Proposition 2.10). The numerator given by equation (12) uses the

relation

E [£(X)] = £(0) +J R(x,dy) [PE(-£(], an
y<a

Lemma (3.1), and the substitution given by (15). The proof of
equation (17) appears in Feldman (1977) but since that proof contains
some errors, (17) will be derived below. Using a renewal theoretic
type argument and the fact that P(x,y)=0 for x>y (namely the system

is not self repairing), it follows that

E[E(X)] = £(A)[1-P(x,E) ] + [ P(x,dy) f(y)
y2o

+ J P(x,dy)E_[£f(X,)]
y<a A

= ] R(x,dv){J P(y,du) f(u)
y<a uZa

+ £(0) [1-2(y,B) T}

Add and subtract J P(y,du) f(u), rearrange terms, and obtain
wa

Ex[f(XA)] = I R(x,dy)Pf(y)
y<o

- I f(u)J R(x,dy)P(y,du).
u<ao y<a

The proof is now completed by noting that

RP(x,u) = R(x,u) - 1[0,u](x)'
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(3.3) THEOREM: Let (X,T) be the Markov renewal process defined
by equations (3) and (4) with Xo = x and let R(x,y) be an absolutely
continuous function with respect to y for each x eE. Then the optimal
control limit policy is the o that satisfies the following equation:
f R(x,dy){m(y) [P (a)-F(a) I-m(a) (P¥ (5) - () 1}
y €[0,0]

= m(a) f(x)-E[o] [PF(a)-£(a)] .

Proof: Follows from Lemma (3,2) by taking a derivative with respect

to a.

(3.4) THEOREM: Let (X,T) be the Markov renewal process defined
by equation (3) and (4) with the state space the set of non-negative

integers, let X.=i, and let r(i,j) = R(i,j)-R(i,j-1). Then the

0
optimal control limit policy is the smallest a such that
a=1

J r(i,k) {m(k) [P¥(a)-F(a) ]-m(a) [P (k) -F (k) ]}
k=0

2 m(a) £(1)-E[o] [P¥(a)-£(a)] .

Proof: Follows from Lemma (3.2) by taking differences with respect
to a.

In the use of Theorem (3.4), it should be pointed out that the
terms r(i,j) are easy to compute since Q is upper triangular (see
Feldman (1976, Section 4)). It should also be noted that equality
is included in equation (9) so replacement occurs when the cumula-
tive damage is greater than or equal to the control limit. Finally,
in order to avoid a common computation error, it might be helpful to

emphasize that the state space E does not contain the state A.
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